Prove that the following identities:
1+cosecAcotA=cotA−1−cosecAcosecA+1+cotA
LHS=RHS
Solve the RHS side
Using a given formula-
cosec2A−cot2A=1
cotA−1−cosecAcosecA+1+cotA=[(cotA−cosecA)−(cosec2A−cot2A)]cosecA+1+cotA
=[(cotA−cosecA)+(cotA−cosecA)(cotA+cosecA)]cosecA+1+cotA
=(cotA−cosecA)(1+cotA+cosecA)(cosecA+1+cotA)
=(cotA−cosecA)
=cosAsinA−1sinA
=cosA−1sinA
Hence, proved.