Prove that
cos4x+cos3x+cos2xsin4x+sin3x+sin2x equals
cos4x+cos3x+cos2xsin4x+sin3x+sin2x
=(cos4x+cos2x)+cos3x(sin4x+sin2x)+sin3x
=2cos(4x+2x2)cos(4x−2x2)+cos3x2sin(4x+2x2)cos(4x−2x2)+sin3x
=2cos(6x2)cos(2x2)+cos3x2sin(6x2)cos(2x2)+sin3x
=2cos3xcosx+cos3x2sin3xcosx+sin3x
=cos3x(2cosx+1)sin3x(2cosx+1)
=cos3xsin3x
=cot3x