1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Definition of Functions
Prove that: ...
Question
Prove that:
c
o
s
e
c
θ
+
cot
θ
c
o
s
e
c
θ
−
cot
θ
=
1
+
2
cot
2
θ
+
2
c
o
s
e
c
θ
cot
θ
Open in App
Solution
c
o
s
e
c
θ
+
cot
θ
c
o
s
e
c
θ
−
cot
θ
×
(
c
o
s
e
c
θ
+
cot
θ
)
(
c
o
s
e
c
θ
+
cot
θ
)
=
(
c
o
s
e
c
θ
+
cot
θ
)
2
c
o
s
e
c
θ
2
−
cot
2
θ
=
c
o
s
e
c
θ
2
+
cot
2
θ
+
2
c
o
s
e
c
θ
.
cot
θ
1
=
1
+
cot
2
θ
+
cot
2
θ
+
2
c
o
s
e
c
θ
.
cot
θ
=
1
+
2
cot
2
θ
+
2
c
o
s
e
c
θ
.
cot
θ
=
R
H
S
Suggest Corrections
1
Similar questions
Q.
Is LHS=RHS?
c
o
s
e
c
θ
+
cot
θ
c
o
s
e
c
θ
−
cot
θ
=
1
+
2
cot
2
θ
+
2
c
o
s
e
c
θ
cot
θ
Q.
If
cot
θ
=
3
4
, prove that
√
sec
θ
−
cosec
θ
sec
θ
+
cosec
θ
=
1
√
7
Q.
Prove the following identity:
tan
θ
sec
θ
+
1
+
cot
θ
c
o
s
e
c
θ
+
1
=
c
o
s
e
c
θ
+
sec
θ
−
sec
θ
.
c
o
s
e
c
θ
Q.
Prove that:
(
cosec
θ
+
cot
θ
)
2
=
sec
θ
+
1
sec
θ
−
1
.
Q.
Prove the following trigonometric identities.
If cosec θ + cot θ = m and cosec θ − cot θ = n, prove that mn = 1