wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
cotA2+cotB2+cotC2cotA+cotB+cotC=(a+b+c)2a2+b2+c2

Open in App
Solution

cotA2+cotB2+cotC2cotA+cotB+cotC=8(8a)(8b)(8c)+8(8b)(8a)(8c)+8(8c)(8a)(8b)⎢ ⎢ ⎢b2+c2a22bc2bc⎥ ⎥ ⎥+⎢ ⎢ ⎢a2+c2b22ac2ac⎥ ⎥ ⎥+⎢ ⎢ ⎢⎢ ⎢ ⎢a2+b2c22ab2ab⎥ ⎥ ⎥⎥ ⎥ ⎥
using cotA2,cosA,sinA expansion
=8(8a)+8(8b)+8(8c)[b2+c2a24]+[a2+c2b24]+[a2+b2c24]
=482(a2+b2+c2)=(a+b+c)2(a2+b2+c2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon