Prove that cotθ+cosecθ−1cotθ−cosecθ+1=cotθ+ cosecθ
Given: cotθ+cosecθ−1cotθ−cosecθ+1=cotθ+ cosecθ
LHS:cotθ+cosecθ−1cotθ−cosecθ+1
=cotθ+cosecθ−(cosec2θ−cot2θ)cotθ−cosecθ+1
=cotθ+cosecθ−(cosecθ−cotθ)(cosecθ+cotθ)cotθ−cosecθ+1
=(cotθ+cosecθ)[1−(cosecθ−cotθ)]cotθ−cosecθ+1
=(cotθ+cosecθ)[cotθ−cosecθ+1]cotθ−cosecθ+1
=cotθ+cosecθ
Hence, proved.