wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that : cscθ1+secθ+1+secθcscθ=secθcscθ+sinθcosθ+2sinθ1+cosθ

Open in App
Solution

L.H.S=cscθ1+secθ+1+secθcscθ
=csc2θ+(1+secθ)2cscθ(1+secθ)
=csc2θ+1+sec2θ+2secθcscθ(1+secθ)
=(csc2θ+sec2θ)+1+2secθcscθ(1+secθ)
=(1sin2θ+1cos2θ)+1+2secθcscθ(1+secθ)
=sin2θ+cos2θsin2θcos2θ+1+2secθcscθ(1+secθ)
=1sin2θcos2θ+1+2cosθ1sinθ(1+1cosθ)
=1+sin2θcos2θ+2sin2θcosθsin2θcos2θ1+cosθsinθcosθ
=1+sin2θcos2θ+2sin2θcosθsinθcosθ(1+cosθ)
=secθcscθ+sinθcosθ+2sinθ1+cosθ=R.H.S
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon