1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VII
Mathematics
Addition and Subtraction of Algebraic Expressions
Prove that: ...
Question
Prove that:
d
y
d
x
(
x
2
y
3
+
x
y
)
=
1
Open in App
Solution
d
y
d
x
(
x
2
+
y
3
+
x
y
)
=
1
⇒
x
2
y
3
+
x
y
=
d
x
d
y
⇒
d
x
d
y
−
x
y
=
x
2
y
3
.
.
.
.
.
(
1
)
hence
P
=
−
y
,
Q
=
y
3
,
x
n
=
x
2
Dividing by
1
n
2
both side of eqn
(
1
)
⇒
1
n
2
d
x
d
y
=
1
x
y
=
y
3
.
.
.
.
.
.
.
(
2
)
Let
1
x
=
u
1
x
2
d
x
d
y
=
d
u
d
y
⇒
1
x
2
d
x
d
y
=
−
d
u
d
y
.
.
.
.
.
(
3
)
Putting eqn
(
3
)
in
(
2
)
we have
−
d
u
d
y
−
u
y
=
y
2
⇒
d
u
d
x
+
u
y
=
−
y
3
I
.
F
=
e
∫
y
d
y
=
e
y
2
/
2
d
y
Let
y
2
/
2
=
t
2
t
d
y
=
d
t
u
.
e
y
2
/
2
=
∫
−
y
3
.
e
y
2
/
2
d
y
e
y
2
/
2
x
=
−
∫
2
t
.
e
t
d
t
e
y
2
/
2
=
−
2
x
(
∫
t
∫
e
t
d
t
−
∫
(
d
t
d
t
∫
e
f
d
t
)
d
t
)
e
y
2
/
2
=
−
2
x
(
t
e
1
−
e
t
+
c
)
⇒
e
y
2
/
2
=
−
2
x
(
y
2
/
2.
e
y
2
/
2
+
C
)
(Ans)
Suggest Corrections
0
Similar questions
Q.
Solve:
d
y
d
x
(
x
2
y
3
+
x
y
)
=
1
Q.
The solution of
(
d
y
d
x
)
(
x
2
y
3
+
x
y
)
=
1
is:
Q.
If
x
y
=
e
x
−
y
, prove that
d
y
d
x
=
log
x
(
1
+
log
x
)
2
.
Q.
If
x
y
=
e
x
−
y
then prove that:
d
y
d
x
=
log
x
(
1
+
log
x
)
2
Q.
Prove that
x
y
=
l
o
g
y
+
c
is the solution of
d
y
d
x
=
y
2
1
−
x
y
(
x
y
≠
1
)
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Addition and Subtraction of Algebraic Equations
MATHEMATICS
Watch in App
Explore more
Addition and Subtraction of Algebraic Expressions
Standard VII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app