wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (1+cotA+tanA)(sinAcosA)sec3Acsc3A=sin2Acos2A

Open in App
Solution

L.H.S=(1+cotA+tanA)(sinAcosA)sec3Acsc3A

=(1+cotA+tanA)(sinAcosA)1cos3A1sin3A

=sin3Acos3A(1+cotA+tanA)(sinAcosA)sin3Acos3A

=sin3Acos3A(1+cotA+tanA)(sinAcosA)(sinAcosA)(sin2A+cos2A+sinAcosA)

=sin3Acos3A(1+cotA+tanA)(1+sinAcosA)

=sin3Acos3A(1+cosAsinA+sinAcosA)(1+sinAcosA)

=sin3Acos3A(sinAcosA+cos2A+sin2AsinAcosA)(1+sinAcosA)

=sin2Acos2A(1+sinAcosA)(1+sinAcosA)

=sin2Acos2A=R.H.S

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon