wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
sinA+sin3A+sin5A+sin7AcosA+cos3A+cos5A+cos7A=tan4A

Open in App
Solution

L.H.S

=sinA+sin3A+sin5A+sin7AcosA+cos3A+5A+cos7A

We know that

sinC+sinD=2sinC+D2cosCD2

Therefore,

=2sin(A+3A2)cos(A3A2)+2sin(5A+7A2)cos(5A7A2)2cos(A+3A2)cos(A3A2)+2cos(5A+7A2)cos(5A7A2)

=2sin(2A)cos(A)+2sin(6A)cos(A)2cos(2A)cos(A)+2cos(6A)cos(A)

=2sin(2A)cos(A)+2sin(6A)cos(A)2cos(2A)cos(A)+2cos(6A)cos(A)[cos(θ)=cosθ]

=sin(2A)+sin(6A)cos(2A)+cos(6A)

=sin(2A)+sin(6A)cos(2A)+cos(6A)

=2sin(2A+6A2)cos(2A6A2)2cos(2A+6A2)cos(2A6A2)

=sin(4A)cos(4A)

=tan4A

Hence, proved.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon