L.H.S
secθ+tanθ−1tanθ−secθ+1
=secθ+tanθ−1tanθ−secθ+1×secθ+tanθ+1tanθ+secθ+1
=(secθ+tanθ)2−12(1+tanθ)2−sec2θ
=sec2θ+tan2θ+2tanθsecθ−11+tan2θ+2tanθ−sec2θ
We know that
sec2θ=1+tan2θ
Therefore,
=1+tan2θ+tan2θ+2tanθsecθ−1sec2θ+2tanθ−sec2θ
=2tan2θ+2tanθsecθ2tanθ
=2tanθ(tanθ+secθ)2tanθ
=tanθ+secθ
=sinθcosθ+1cosθ
=1+sinθcosθ
Hence, proved.