wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that secθ+tanθ1tanθsecθ+1=1+sinθcosθ

Open in App
Solution

L.H.S

secθ+tanθ1tanθsecθ+1

=secθ+tanθ1tanθsecθ+1×secθ+tanθ+1tanθ+secθ+1

=(secθ+tanθ)212(1+tanθ)2sec2θ

=sec2θ+tan2θ+2tanθsecθ11+tan2θ+2tanθsec2θ

We know that

sec2θ=1+tan2θ

Therefore,

=1+tan2θ+tan2θ+2tanθsecθ1sec2θ+2tanθsec2θ

=2tan2θ+2tanθsecθ2tanθ

=2tanθ(tanθ+secθ)2tanθ

=tanθ+secθ

=sinθcosθ+1cosθ

=1+sinθcosθ

Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon