wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (sin5θ)(sinθ)=16cos4θ12cos2θ+1

Open in App
Solution

L.H.S=sin5θsinθ

=sin(4θ+θ)sinθ

=sin4θcosθ+cos4θsinθsinθ

=2sin2θcos2θcosθ+cos4θsinθsinθ

=4sinθcos2θcos2θ+cos4θsinθsinθ

=4cos2θcos2θ+cos4θ

=4(2cos2θ1)cos2θ+(2cos22θ1)

=(8cos2θ4)cos2θ+(2cos22θ1)

=8cos4θ4cos2θ+2cos22θ1

=8cos4θ4cos2θ+2(2cos2θ1)21

=8cos4θ4cos2θ+2(4cos4θ+14cos2θ1

=8cos4θ4cos2θ+8cos4θ+28cos2θ1

=16cos4θ12cos2θ+1=R.H.S

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Conjugate of a Complex Number
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon