L.H.S=sin5x−2sin3x+sinxcos5x−cosx
sinA+sinB=2sinA+B2cosA−B2
cosA−cosB=2sinA+B2sinA−B2
=sin5x+x2cos5x−x2−2sin3x−2sin5x+x2sin5x−x2
=2sin6x2cos4x2−2sin3x−2sin6x2sin4x2
=2sin3xcos2x−2sin3x−2sin3xsin2x
L.H.S=sin5x−2sin3x+sinxcos5x−cosx
=2sin3xcos2x−2sin3x−2sin3xsin2x
cos2x=1−2sin2x
sin2x=2sinxcosx
=2sin3x(cos2x−1)2sinxcosx
=(cos2x−1)−sin2x=−2sin2x−2sinxcosx=sinxcosx=tanx=R.H.S
Hence Proved