LHS
sin5x+sinx−2sin3xcos5x−cosx
=2sin(5x+x2)cos(5x−x2)−2sin3x2sin(5x+x2)sin(x−5x2)
=2sin3xcos2x−2sin3x2sin3xsin(−2x)∴sin(−θ)=−sinθ
=2sin3x(cos2x−1)−2sin3xsin2x
=1−cos2xsin2x
=1−(1−2sin2x)2sinxcosx
=1−1+2sin2x2sinxcosx
=2sin2x2sinxcosx
=sinxcosx
=tanxRHS
Hence, proved.