L.H.S.=(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)
∵cosA+cosB=2cos(A+B2)cos(A−B2)
and sinA+sinB=2sin(A+B2)cos(A−B2)
=[2sin(7x+5x2)cos(7x−5x2)]+[2 sin(9x+3x2)cos(9x−3x2)][2 cos(7x+5x2)cos(7x−5x2)]+[2cos(9x+3x2)cos(9x−3x2)]=[2sin(12x2)cos(2x2)]+[2sin(12x2)cos(6x2)][2 cos(12x2)cos(2x2)]+[2 cos(12x2)cos(6x2)]=2sin6xcosx+2sin6xcos3x2cos6xcosx+2cos6xcos3x =2sin6x[cosx+cos3x]2cos6x[cosx+cos3x]=2sin6x2cos6x=tan6x=R.H.S
Hence proved.