wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that :
sinAsinBcosA+cosB+cosAcosBsinA+sinB=0

Open in App
Solution

L.H.S. = sinAsinBcosA+cosB+cosAcosBsinA+sinB

L.H.S. = (sinAsinB)(sinA+sinB)+(cosA+cosB)(cosAcosB)(cosA+cosB)(sinA+sinB)

L.H.S. = sin2Asin2B+cos2Acos2B(cosA+cosB)(sinA+sinB)

L.H.S. = (sin2A+cos2A)(sin2B+cos2B)(cosA+cosB)(sinA+sinB)

L.H.S. = 11(cosA+cosB)(sinA+sinB)=0=R.H.S.

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basics of geometry
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon