wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
sinθ1+cosθ+1+cosθsinθ=2cosecθ

Open in App
Solution

We have,

LHS = sinθ1+cosθ+1+cosθsinθ

LHS = sin2θ+(1+cosθ)2sinθ(1+cosθ)

LHS = sin2θ+1+2cosθ+cos2θsinθ(1+cosθ)

LHS = (sin2θ+cos2θ)+1+2cosθsinθ(1+cosθ) [sin2θ+cos2θ=1]

LHS = 2+2cosθsinθ(1+cosθ)=2(1+cosθ)sinθ(1+cosθ)=2sinθ=2cosecθ=RHS

flag
Suggest Corrections
thumbs-up
21
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon