wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:-

sinθ cosθ+1 sinθ+ cosθ1=1( secθ tanθ)

Open in App
Solution

L.H.S=sinθcosθ+1sinθ+cosθ1 [divide by cosθ both number and denemenotor]

sinθcosθ+1cosθsinθ+cosθ1cosθ=sinθcosθ1+1cosθsinθcosθ+11cosθ

=tanθ1+secθtanθ+1sec [tanθ=sinθcosθ;sec=1cosθ]

we know that, sec2θtan2θ=1...(1)

=tanθ+secθ(sec2θtan2θ)tanθ+1secθ

=(tanθ+secθ)(secθtanθ)(secθ+tanθ)tanθsecθ+1

=(secθ+tanθ)(1secθ+tanθ)(tanθsecθ+1)

=secθ+tanθ

(multiply and divide by secθtanθ)

=(secθ+tanθ)(secθ+tanθ)(secθtanθ)

=sec2θtan2θsecθtanθ

=1secθtanθ using eq (1)

Therefore, LHS = RHS

Hence, proved

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon