wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that sinθcosθ+1sinθ+cosθ1=1secθtanθ.

Open in App
Solution

Given
sinθcosθ+1sinθ+cosθ1

Divide numerator and denominator by cosθ

=sinθcosθcosθcosθ+1cosθsinθcosθ+cosθcosθ1cosθ

=tanθ1+secθtanθ+1secθ

Put 1=sec2θtan2θ in numerator

=(tanθ+secθ)(sec2θtan2θ)tanθsecθ1

=(secθ+tanθ)(secθ+tanθ)(secθtanθ)tanθsecθ1

=(secθ+tanθ)(secθ+tanθ)(secθtanθ)tanθsecθ1

=(secθ+tanθ)[1(secθtanθ)]tanθsecθ1

=(secθ+tanθ)[1secθ+tanθ]tanθsecθ1

=(secθ+tanθ)[tanθsecθ+1]tanθsecθ1

=secθ+tanθ

Multiply and divide with (secθtanθ)

=(secθ+tanθ)×(secθtanθ)(secθtanθ)

=(sec2θtan2θ)(secθtanθ)

sec2θtan2θ=1

=1(secθtanθ)

Hence proved




flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identity- 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon