wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that sinθ+cosθsinθcosθ+sinθcosθsinθ+cosθ=22sin2θ1=212cos2θ

Open in App
Solution

sinθ+cosθsinθcosθ+sinθcosθsinθ+cosθ

=sinθ+cosθsinθcosθ×sinθ+cosθsinθ+cosθ+sinθcosθsinθcosθ×sinθcosθsinθ+cosθ

=(sinθ+cosθ)2+(sinθcosθ)2sin2θcos2θ

=sin2θ+cos2θ2sinθcosθ+sin2θ+cos2θ+2sinθcosθsin2θcos2θ

=2sin2θ+2cos2θsin2θ(1sin2θ)

=2(sin2θ+cos2θ)2sin2θ1

=22sin2θ1 ........(1)

=22(1cos2θ)1

=222cos2θ1

=212cos2θ ........(2)

From (1) and (2) we get

sinθ+cosθsinθcosθ+sinθcosθsinθ+cosθ=22sin2θ1=212cos2θ

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon