wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
sinθcotθ+cosecθ=2+sinθcotθcosecθ

Open in App
Solution

We have to prove that
sinθcot+cosecθ=2+sinθcotθcosecθor,sinθcotθ+cosecθsinθcotθcosecθ=2

Now,

LHS = sinθcotθ+cosecθsinθcotθcosecθ

LHS = sinθcosecθ+cotθ+sinθcosecθcotθ

LHS = sinθ{1cosecθ+cotθ+1cosecθcotθ}

LHS = sinθ{cosecθcotθ+cosecθ+cotθcosec2θcotθ}=sinθ(2cosecθ1)

LHS = sinθ(2cosecθ)=2sinθ×1sinθ=2=RHS

LHS = 2 = RHS


ALTERNANATIVELY,

LHS = sinθcotθ+cosecθ

LHS=sinθ(cosecθcotθ) [1cosecθ+cotθ=cosecθcotθ]

LHS = sinθ(1sinθcosθsinθ)=sinθ(1cosθsinθ)

LHS = 1 - cos θ

= 2 - (1 + cos θ)

LHS = 2 - (1+cosθ)(1cosθ)1cosθ

LHS = 2 - (1cos2θ)1cosθ

LHS = 2 - sin2θ1cosθ=2sinθ1cosθsinθ=2sinθ1sinθcosθsinθ

LHS = 2 - sinθcosecθcotθ = RHS

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon