Simplify the RHS of sinθcotθ+cscθ=2+sinθcotθ−cscθ
2+sinθcotθ−cscθ=2+sin2θcosθ−1
=2cosθ−2+(1−cos2θ)cosθ−1
=2cosθ−cos2θ−1cosθ−1
=−(cosθ−1)2cosθ−1
=1−cosθ
Simplify the LHS of sinθcotθ+cscθ=2+sinθcotθ−cscθ
sinθcotθ+cscθ=sin2θcosθ+1
=1−cos2θcosθ+1
=(cosθ+1)(1−cosθ)cosθ+1
=1−cosθ
Hence LHS=RHS.