wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that sinθcotθ+cscθ=2+sinθcotθcscθ

Open in App
Solution

Simplify the RHS of sinθcotθ+cscθ=2+sinθcotθcscθ

2+sinθcotθcscθ=2+sin2θcosθ1

=2cosθ2+(1cos2θ)cosθ1

=2cosθcos2θ1cosθ1

=(cosθ1)2cosθ1

=1cosθ

Simplify the LHS of sinθcotθ+cscθ=2+sinθcotθcscθ

sinθcotθ+cscθ=sin2θcosθ+1

=1cos2θcosθ+1

=(cosθ+1)(1cosθ)cosθ+1

=1cosθ

Hence LHS=RHS.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Complex Numbers
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon