We have,
L.H.S.
sinx−sin3x+sin5x−sin7xcosx−cos3x−cos5x+cos7x
=(sinx+sin5x)−(sin3x+sin7x)(cosx−cos5x)−(cos3x−cos7x)
=2sin(x+5x2)cos(x−5x2)−2sin(3x+7x2)cos(3x−7x2)2sin(x+5x2)sin(5x−x2)−2sin(3x+7x2)sin(7x−3x2)
=sin3xcos(−2x)−sin5xcos(−2x)sin3xsin2x−sin5xsin2x
=cos2xsin3x−sin5xcos2xsin3xsin2x−sin5xsin2x
=cos2x(sin3x−sin3x)sin2x(sin3x−sin5x)
=cot2x
L.H.S.=R.H.S.
Hence proved.