wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: sinxsin3x+sin5xsin7xcosxcos3xcos5x+cos7x=cot2x

Open in App
Solution

We have,

L.H.S.

sinxsin3x+sin5xsin7xcosxcos3xcos5x+cos7x

=(sinx+sin5x)(sin3x+sin7x)(cosxcos5x)(cos3xcos7x)

=2sin(x+5x2)cos(x5x2)2sin(3x+7x2)cos(3x7x2)2sin(x+5x2)sin(5xx2)2sin(3x+7x2)sin(7x3x2)

=sin3xcos(2x)sin5xcos(2x)sin3xsin2xsin5xsin2x

=cos2xsin3xsin5xcos2xsin3xsin2xsin5xsin2x

=cos2x(sin3xsin3x)sin2x(sin3xsin5x)

=cot2x

L.H.S.=R.H.S.

Hence proved.

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon