wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 1+sinθ1sinθ = tan(π4+θ2)

Open in App
Solution

R.H.S.

tan(π4+θ2)

=tanπ4+tanθ21tanπ4.tanθ2

=1+tanθ21tanθ2

=1+sinθ2cosθ21sinθ2cosθ2

=cosθ2+sinθ2cosθ2sinθ2

=(cosθ2+sinθ2)2(cosθ2sinθ2)2

=cos2θ2+sin2θ2+2sinθ2cosθ2cos2θ2+sin2θ22sinθ2cosθ2

=1+sinθ1sinθ

R.H.S.

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon