R.H.S.
tan(π4+θ2)
=tanπ4+tanθ21−tanπ4.tanθ2
=1+tanθ21−tanθ2
=1+sinθ2cosθ21−sinθ2cosθ2
=cosθ2+sinθ2cosθ2−sinθ2
=√(cosθ2+sinθ2)2√(cosθ2−sinθ2)2
=√cos2θ2+sin2θ2+2sinθ2cosθ2√cos2θ2+sin2θ2−2sinθ2cosθ2
=√1+sinθ√1−sinθ
Hence proved.
Prove that:
cos θ1−sin θ=tan (π4+θ2)