wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
tan(90θ)cosecθ+1+cosecθ+1cotθ=2secθ

Open in App
Solution

LHS=tan(90θ)cscθ+1+cscθ+1cotθ
=cotθcscθ+1+cscθ+1cotθ
=cot2θ+csc2θ+1+2cscθcotθ(cscθ+1)
=1+cot2θ+csc2θ+2cscθcotθ(cscθ+1)
=csc2θ+csc2θ+2cscθcotθ(cscθ+1)
=2csc2θ+2cscθcotθ(cscθ+1)
=2cscθ(cscθ+1)cotθ(cscθ+1)
=2cscθcotθ
=2cscθtanθ
=2×1sinθ×sinθcosθ
=2secθ=RHS
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon