wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
tanθ1cotθ+cotθ1tanθ=1+tanθ+cotθ

Open in App
Solution

L.H.S = tanθ1cotθ+cotθ1tanθ
=sinθcosθ1cosθsinθ+cosθsinθ1sinθcosθ
=sinθcosθsinθcosθsinθ+cosθsinθcosθsinθcosθ.
=sin2θcosθ(sinθcosθ)+cos2θsin(cosθsinθ)
=sin2θcosθ(sinθcosθ)cos2θsinθ(sinθcosθ)
=sin3θcos3θsinθcosθ(sinθcosθ)
=(sinθcosθ)(sin2θ+sinθcosθ+cos2θ)sinθcosθ(sinθcosθ)
sin2θ+sinθcosθ+cos2θsinθcosθ
=sin2θsinθcosθ+sinθcosθsinθcosθ+cos2θsinθcosθ
= tanθ+1++cotθ
=1+tanθ+cotθ
= R.H.S.

1193996_1340342_ans_e4c8880838eb4ccca568a1f83e722537.JPG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon