Consider the given equation.
tanθ1−cotθ+cotθ1−tanθ=1+tanθ+cotθ
We know that,
tanθ=sinθcosθ and cotθ=cosθsinθ
a3−b3=(a−b)(a2+ab+b2)
Consider the LHS.
⇒tanθ1−cotθ+cotθ1−tanθ
⇒sinθcosθ1−cosθsinθ+cosθsinθ1−sinθcosθ
⇒sin2θcosθ(sinθ−cosθ)+cos2θsinθ(cosθ−sinθ)
⇒tanθsinθ(sinθ−cosθ)+cotθcosθ(cosθ−sinθ)
⇒1(sinθ−cosθ)[tanθsinθ−cotθcosθ]
⇒1(sinθ−cosθ)[sin3θ−cos3θsinθcosθ]
⇒1(sinθ−cosθ)(sinθ−cosθ)[sin2θ+sinθcosθ+cos2θsinθcosθ]
⇒sinθcosθ+1+cosθsinθ
⇒1+tanθ+cotθ
⇒RHS
Hence, proved.