wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tanθ1cotθ+cotθ1tanθ=1+tanθ+cotθ.

Open in App
Solution

Consider the given equation.

tanθ1cotθ+cotθ1tanθ=1+tanθ+cotθ

We know that,

tanθ=sinθcosθ and cotθ=cosθsinθ

a3b3=(ab)(a2+ab+b2)

Consider the LHS.

tanθ1cotθ+cotθ1tanθ

sinθcosθ1cosθsinθ+cosθsinθ1sinθcosθ

sin2θcosθ(sinθcosθ)+cos2θsinθ(cosθsinθ)

tanθsinθ(sinθcosθ)+cotθcosθ(cosθsinθ)

1(sinθcosθ)[tanθsinθcotθcosθ]

1(sinθcosθ)[sin3θcos3θsinθcosθ]

1(sinθcosθ)(sinθcosθ)[sin2θ+sinθcosθ+cos2θsinθcosθ]

sinθcosθ+1+cosθsinθ

1+tanθ+cotθ

RHS

Hence, proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon