wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tanθ1cotθ+cotθ1tanθ=1+tanθ+cotθ

Open in App
Solution

tanθ1cotθ+cotθ1tanθ

=sinθcosθ1cosθsinθ+cosθsinθ1sinθcosθ

=sin2θcosθ(sinθcosθ)+cos2θsinθ(cosθsinθ)

=sin3θcos3θsinθcosθ(sinθcosθ)

=(sinθcosθ)(sin2θ+sinθcosθ+cos2θ)sinθcosθ(sinθcosθ)

=sin2θ+sinθcosθ+cos2θsinθcosθ

=sin2θsinθcosθ+cos2θsinθcosθ+sinθcosθsinθcosθ

=sinθcosθ+cosθsinθ+1

=tanθ+cotθ+1
Hence proved.

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon