wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that :
tanθcotθsinθcosθ=sec2θcosec2θ=tan2θcot2θ

Open in App
Solution

We have,
LHS = tanθcotθsinθcosθ=sinθcosθcosθsinθsinθcosθ=sin2θcos2θsinθcosθcosθsinθ

LHS = sin2θcos2θsin2θcos2θ

LHS = sin2θsin2θcos2θcos2θsin2θcos2θ

LHS = 1cos2θ1sin2θ

LHS = sec2θcosec2θ=(1+tan2θ)(1+cot2θ)=tan2θcot2θ=RHS.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon