wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tanθcotθsinθcosθ=tan2θcot2θ

Open in App
Solution

L.H.Q.=tanθcotθ(sinθcosθ)

=(sinθcosθ)(cosθsinθ)(sinθcosθ)

=(sin2θcos2θ(sinθcosθ))(sinθcosθ)

=sin2θcos2θ(sin2θcos2θ)

=sin2θsin2cos2θcos2θsin2θcos2θ

=1cos2θ1sin2θ

=sec2θcosec2θ

=(1+tan2θ)(1+cot2θ)

=1+tan2θ1cot2θ

=tan2θcot2θ=RHQ.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon