wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
tanθ(1cotθ)+cotθ(1tanθ)=(1+secθcosecθ)

Open in App
Solution

tanθ(1cotθ)+cotθ(1tanθ)

=tanθtan2θ+cotθcot2θ1cotθtanθ+1

=tanθ+cotθsec2θcsc2θ+22(cotθ+tanθ)

sec2θ+csc2θ=sec2θcsc2θ
tanθ+cotθ=secθcscθ

=secθcscθsec2θcsc2θ+22secθcscθ

=(2secθcscθ)(1+secθcscθ)(2secθ cscθ)

tanθ1cotθ+cotθ1tanθ=(1+secθcscθ).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon