wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tanθ+secθ1tanθsecθ+1=1+sinθcosθ

Open in App
Solution

To Prove:

tanθ+secθ1tanθsecθ+1=1+sinθcosθ


Solution:

L.H.S =tanθ+secθ1tanθsecθ+1

We can write, sec2θtan2θ=1

=tanθ+secθ(sec2θtan2θ)tanθsecθ+1

=tanθ+secθ(secθtanθ)(secθ+tanθ)tanθsecθ+1

=(tanθ+secθ){1(secθtanθ)}tanθsecθ+1

=(tanθ+secθ){1secθ+tanθ}tanθsecθ+1

=tanθ+secθ

=sinθcosθ+1cosθ

=1+sinθcosθ

= R.H.S

since L.H.S = R.H.S

tanθ+secθ1tanθsecθ+1=1+sinθcosθ

Hence Proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon