wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that : tanθ+secθ1tanθsecθ+1 = secθ + tan θ = 1+sinθcosθ.

Open in App
Solution

LHS = tanθ+secθ1tanθsecθ+1

LHS = (tanθ+secθ)1(tanθsecθ)+1

LHS = (secθ+tanθ)(sec2θtan2θ)tanθsecθ+1

LHS = (secθ+tanθ)(secθ+tanθ)(secθtanθ)tanθsecθ+1

LHS = (secθ+tanθ)[1(secθtanθ)]tanθsecθ+1

LHS = (secθ+tanθ)(1secθ+tanθ)tanθsecθ+1

LHS = (secθ+tanθ)(tanθsecθ+1)(tanθsecθ+1)

LHS = secθ+tanθ

LHS =1cosθ+sinθcosθ = 1+sinθcosθ = RHS

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon