wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tanθ1cotθ+cotθ1tanθ=1+secθcosecθ

Open in App
Solution


(tanθ1cotθ)+(cotθ1tanθ)=((sinθcosθ)1(cosθsinθ))+((cosθsinθ)1(sinθcosθ))=(sinθcosθ)×(sinθ(sinθcosθ))+(cosθsinθ)×(cosθ(cosθsinθ))=(1(sinθcosθ))[(sin2θcosθ)(cos2θsinθ)]=(1(sinθcosθ))(sin3θcos3θsinθcosθ)=(1(sinθcosθ))((sinθcosθ)(sin2θ+sinθcosθ+cos2θ)sinθcosθ)=(1+sinθcosθsinθcosθ)=secθcosecθ+1


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon