wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 11.2.3+53.4.5+95.6.7+...=psqloget.Find p+s+qt

Open in App
Solution

11.2.3+53.4.5+95.6.7+...=psqloget
Here, Tn=4n3(2n1)2n(2n+1)
Let's resolve 4n3(2n1)2n(2n+1) into partial fractions
4n3(2n1)2n(2n+1)=A(2n1)+B2n+C2n+1
4n3=A(4n2+2n)+B(4n21)+C(4n22n)
4n3=4(A+B+C)n2+2(AC)nB
On comparing, we get
A+B+C=0;AC=2;B=3
Solving , we get
A=12,C=52
So, Tn=12(2n1)+32n52(2n+1)
=12[(12n112n)5(12n12n+1)]
Putting n=1,2,3,4... , and addin g , we get
S=12[(112+1314+.....)5(1213+1415+....)]
S=12[(112+1314+.....)+5(112+1314+15+....)]
S=12[log2+5log25]
S=523log2
Comparing with given value, we get
p=52,q=3,t=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theoretical Probability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon