11.2.3+53.4.5+95.6.7+...=ps−qloget
Here, Tn=4n−3(2n−1)2n(2n+1)
Let's resolve 4n−3(2n−1)2n(2n+1) into partial fractions
4n−3(2n−1)2n(2n+1)=A(2n−1)+B2n+C2n+1
⇒4n−3=A(4n2+2n)+B(4n2−1)+C(4n2−2n)
⇒4n−3=4(A+B+C)n2+2(A−C)n−B
On comparing, we get
A+B+C=0;A−C=2;B=3
Solving , we get
A=−12,C=−52
So, Tn=−12(2n−1)+32n−52(2n+1)
=−12[(12n−1−12n)−5(12n−12n+1)]
Putting n=1,2,3,4... , and addin g , we get
S=−12[(1−12+13−14+.....)−5(12−13+14−15+....)]
⇒S=−12[(1−12+13−14+.....)+5(1−12+13−14+15+....)]
S=−12[log2+5log2−5]
⇒S=52−3log2
Comparing with given value, we get
p=52,q=3,t=2