Prove that 1+secθsecθ=sin2θ1−cosθ.
First, we consider 1+secθsecθ
=1+1cosθ1cosθ=(cosθ+1)cosθ(cosθ)
=1+cosθ
=(1+cosθ)×(1−cosθ)(1−cosθ)
=1−cos2θ1−cosθ
=sin2θ1−cosθ
Prove the following trigonometric identities:
1+sec θsec θ=sin2 θ1−cos θ