wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that a0f(x) dx=a0f(ax) dx,
hence evaluate π0x sinx1+cos2x dx.

Open in App
Solution

Let I=a0f(ax) dx (1)Put ax=tdx=dtWhen x= 0, then t=a, when x=a, t= 0I=0af(t) dt=a0f(t)dt [baf(x) dx=abf(x) dx]

Since, Integration is unaffected of change of variable parameter, we have
I=a0f(t) dt=a0f(x) dx (2)

From (1) & (2),we get

a0f(x) dx=a0f(ax) dxHence proved.

Using the above property, we get

I1=π0x sinx1+cos2x dx=π0(πx) sin(πx)1+cos2(πx) dxI1=π0(πx) sinx1+cos2x dxI1=π0πsinx1+cos2x dxI12I1=π0πsinx1+cos2x dx

Put cosx=zsinx dx=dz
When x=0,z=1 and when x=π,z=1
2I1=11π dz1+z2=11π dz1+z2=π[tan1z]11=π(π4π4)=π22I1=π24

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon