Let I=∫a0f(a−x) dx ⋯(1)Put a−x=t⇒−dx=dtWhen x= 0, then t=a, when x=a, t= 0∴I=∫0a−f(t) dt=∫a0f(t)dt [∵∫baf(x) dx=−∫abf(x) dx]
Since, Integration is unaffected of change of variable parameter, we have
I=∫a0f(t) dt=∫a0f(x) dx ⋯(2)
From (1) & (2),we get
⇒∫a0f(x) dx=∫a0f(a−x) dxHence proved.
Using the above property, we get
I1=∫π0x sinx1+cos2x dx=∫π0(π−x) sin(π−x)1+cos2(π−x) dx⇒I1=∫π0(π−x) sinx1+cos2x dx⇒I1=∫π0πsinx1+cos2x dx−I1⇒2I1=∫π0πsinx1+cos2x dx
Put cosx=z⇒−sinx dx=dz
When x=0,z=1 and when x=π,z=−1
∴2I1=∫−11−π dz1+z2=∫1−1π dz1+z2=π[tan−1z]1−1=π(π4−−π4)=π22∴I1=π24