wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that π/20 ln(sinx)dx=π/20ln(cosx)dx=π/20ln(sin2x)dx=π2.ln2.

Open in App
Solution

Let S=π20ln(sinx)dx
Put t=π2x
S=π20ln(sin(π2t))dt=π20ln(cost)dt
Sum the two expressions, we get
2S=π20ln(sinx)dx+π20ln(cosx)dx
2S=π20ln(sinxcosx)dx=π20ln(12sin(2x))dx=π2ln(12)+π20lnsin(2x)dx
Let us integrate the last integral by substituting t=2x and t=2xπ2 in two intervals.
So, π20ln(sin(2x))dx=π40ln(sin(2x))dx+π2π4ln(sin(2x))dx
So,
2S=π2ln(12)+SS=π2ln(12)=π2ln(2)
Also, S=π20ln(sin(2x))dx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon