wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that π/40(tanx+cotx)dx=2π2

Open in App
Solution

Let LHS =π40(tanx+cotx)dx

=π/40(tanx⎜ ⎜ ⎜ ⎜ ⎜sinx(cosx)+cosxsinx⎟ ⎟ ⎟ ⎟ ⎟dx=π/40(tanxsinx+cosxsinx.cosx

Thus 2π/40(tanxsinx+cosx2sinx.cosxdx=2π/40(tanxsinx+cosx1(sinxcosx)2

Let sinxcosx=z

(cosx+sinx)dx=dz

Also If x=0,z=1 and x=π4,z=1212=0

Therefore, LHS =201dz1z2

=2[sin1z]01=2[sin10sin1(1)]

=2[0(π2)]=2.π2 = RHS.

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon