wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
π0xdx1+sinx=π

Open in App
Solution

I=π0(x1+sinx)dx
I=π0[x1+sinx]dx [baf(x)dx=baf(a+bx)dx]
2I=π0(x1+sinx)dx
2I=π0[x1+sinx]dx [2baf(x)dx=2baf(x)dxiff(x)=7(2bx)]
I=π/20(11+sinx)dx
I=π/20(1sinxcos2x)dx
I=π/20(sec2xtanxsecx)dx
I=π[tanxsecx]π/20
I=πsinx1cosxπ/20
I=π{limxπ/2(sinx1cosx)(01cos0)}
I=π{limxπ/2(cosxsinx)(1)}
I=π{0+1}
I=π.

1173018_1346787_ans_16ec191de5294914a2a5e91f4a67b447.jpg

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon