wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 2a0f(x)dx=2a0f(x)dx; f(2ax)=f(x)=0; f(2ax)=f(x) and hence evaluate 2π0cos5xdx.

Open in App
Solution

Consider I=2a0f(x)dx
=a0f(x)dx+2aaf(x)dx
Put x=2audx=du in second integral
When x=a,u=a
When x=2a,u=0
I=a0f(x)dx0af(2au)du
I=a0f(x)dx+a0f(2au)du ....... (i)
I=a0f(x)dx+a0f(u)du ; f(2ax)=f(x)
=a0f(x)dx+a0f(x)dx
=2a0f(x)dx
From (i)
I=a0f(x)dxa0f(u)du ; f(2ax)=f(x)
=a0f(x)dxa0f(x)dx
=0
Let f(x)=cos5x
Consider f(2πx)=cos5(2πx)=(cos(2πx))5=cos5x
2π0cos5xdx
=2π0cos5xdx
=cos6x6(sinx)π0
=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon