wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that baf(x)dx=baf(a+bx)dx

Open in App
Solution

consider a+bx=tdx=dt
a+bx=ta+bt=x
f(a+bx)=f(t)
baf(a+bx) dx=abf(t)dt
Using the property of baf(t)dt=abf(t)dt

baf(a+bx) dx=baf(t)dt
Now using property,baf(a+bx) dx=abf(a+bt)dt

abf(a+bt)dt=baf(a+bx) dx
Replacing t=a+bx
baf(a+bab+x)dx
baf(x)dx
Hence Proved..

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon