wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
x2dx(xsinx+cosx)2

Open in App
Solution

Let I=x2(xsinx+cosx)2dx
=(xsecx)(xcosx(xsinx+cosx)2)dx
Using the rule of integration by parts, we get
ddx(1xsinx+cosx)
=1(xsinx+cosx)2ddx(xsinx+cosx)
=1(xsinx+cosx)2(xcosx+sinxsinx)
=1(xsinx+cosx)2(xcosx)
=xcosx(xsinx+cosx)2
xcosx(xsinx+cosx)2dx=1xsinx+cosx ..........(1)
Also,ddx(xsecx)=xsecxtanx+secx
=x×1cosx×sinxcosx+1cosx
ddx(xsecx)=xsinx+cosxcos2x .........(2)
Now, in integration by parts, we take,
u=xsecx and dv=xcosx(xsinx+cosx)2
du=xsinx+cosxcos2x and v=1xsinx+cosx
I=(xsecx)(1xsinx+cosx)xsinx+cosxcos2x×1xsinx+cosxdx
=xcosx(xsinx+cosx)+sec2xdx
=xcosx(xsinx+cosx)+tanx
=xcosx(xsinx+cosx)+sinxcosx
=x+sinx(xsinx+cosx)cosx(xsinx+cosx)
=x+xsin2x+sinxcosxcosx(xsinx+cosx)
=x(1sin2x+sinxcosx)cosx(xsinx+cosx)
=xcos2x+xsinxcosxcosx(xsinx+cosx)
=cosx(xcosx+xsinx)cosx(xsinx+cosx)
=(xcosx+xsinx)(xsinx+cosx)+c
I=(xcosx+xsinx)(xsinx+cosx)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon