wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
(xtan1x)(1+x2)3/2dx

Open in App
Solution

Ref.Image.
xtan1(x)(1+x2)3/2dx.
Put tan1x=t x=tant
Differentiating 11+x2dx.=dt
=tant.(t)1+x2dt (cost=11+x2)
=tant.(t)1+tan2tdt (1+tan2t=sec2t)
=t.tantsectdt (sint=x1+x2) (from figure)
=t.sint.dt
Applying Integration by parts
=t.sint.dt(d(t)dtsint.dt)dt
=t.costcost.dt
=t.cost+sint+c
=tan1x.11+x2+x1+x2+c
=tan1x1+x2+x1+x2+c

1234905_1303770_ans_69d7930140d84fd5b2bb1bdb47729839.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon