wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that tanxa2+b2tan2xdx=log((a2b2)cos2x+a2+b2)(a2b2).

Open in App
Solution

I=tanxa2+b2tan2xdx
Put u=tanxdu=sec2xdx
I=u(u2+1)(a2+b2u2)du
Put s=u2ds=2udu.
I=121(s+1)(a2+b2s)ds.
=12(1s(ab)(a+b)+(ab)(a+b)b2a2(ab)(a+b)+b2s(ab)(a+b))ds
=log((u2+1)(ab)(a+b))2(ab)(a+b)log((a+b)(ab)(a2+b2u2))2(ab)(a+b)
=log((a2b2)cos2x+a2+b2)2(a2b2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon