Let I=∫(x2+1)dx(x2+2)(2x2+1)=∫(13(2x2+1)+13(x2+2))dx
⇒I=I1+I2
Where
I1=13∫1(2x2+1)dx
Put t=√2x⇒dt=√2dx
Therefore
I1=13√2∫1t2+1dt=13√2tan−1t=13√2tan−1√2x
And
I2=13∫1x2+2dx=13∫12(x22+1)dx=16∫1x22+1dx
Put u=x√2⇒du=1√2dx
Therefore
I2=13√2∫1u2+1du=13√2tan−1u=13√2tan−1x√2
Hence
I=13√(2){tan−1x√(2)+tan−1x√2}