1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Global Maxima
Prove that ...
Question
Prove that
∫
x
+
3
√
(
x
2
+
2
x
+
2
)
d
x
=
√
x
2
+
2
x
+
2
+
2
log
[
x
+
1
−
(
x
+
1
)
2
+
1
1
/
2
]
.
Open in App
Solution
Let
I
=
∫
x
+
3
√
x
2
+
2
x
+
2
d
x
=
∫
x
+
3
√
(
x
+
1
)
2
+
1
d
x
Put
x
+
1
=
t
⇒
d
x
=
d
t
I
=
∫
t
+
2
√
t
2
+
1
d
t
Now put
t
=
tan
u
⇒
d
t
=
sec
2
u
d
u
→
I
=
∫
(
tan
u
+
2
)
sec
u
d
u
=
∫
tan
u
sec
u
d
u
+
2
∫
sec
u
d
u
=
sec
u
+
2
log
(
tan
u
+
sec
u
)
=
√
1
+
tan
2
u
+
2
log
(
tan
u
+
√
1
+
tan
2
u
)
=
√
t
2
+
1
+
2
log
(
√
t
2
+
1
+
t
)
=
√
(
x
+
1
)
2
+
1
+
2
log
(
√
(
x
+
1
)
2
+
x
+
1
)
=
√
x
2
+
2
x
+
2
+
2
log
(
√
x
2
+
2
x
+
2
+
x
+
1
)
Suggest Corrections
0
Similar questions
Q.
∫
√
x
+
1
x
d
x
is equal to