Let I=∫x4(x10−1)x20+3x10+1dx
Put t=x5⇒dt=5x4
I=15∫t2−1t4+3t2+1dt=15∫t2−1(t2−√52+32)(t2+√52+32)dt
=15∫⎛⎜
⎜⎝5+√5√5(2t2+√5+3)+5−√5√5(−2t2+√5−3)⎞⎟
⎟⎠dt
=(15+1√5)∫12t2+√5+3dt+(1√5−15)∫1−2u2+√5−3dt
=⎛⎜
⎜⎝15(3+√5)+1√5(3+√5)⎞⎟
⎟⎠∫12t2(3+√5)+1dt
+⎛⎜
⎜⎝1√5(√5−3)−15(√5−3)⎞⎟
⎟⎠∫11−2t2(√5−3)dt
=−(√5−1)√23+√5(tan−1(√23+√5x5)−tan−1(√12(3+√5)x5))5(√5−3)
=−15tan−1(x5x10+1)