1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Polynomial Functions
Prove that ...
Question
Prove that
∫
∞
0
[
n
e
−
x
]
d
x
=
l
n
(
n
n
n
!
)
, where n is a natural number greater than
1
and
[
⋅
]
denotes the greatest integer function.
Open in App
Solution
Given :
∫
∞
0
[
n
e
−
x
]
d
x
∫
∞
0
[
n
e
−
x
]
d
x
=
−
⎡
⎢
⎣
∫
ln
n
∞
[
n
e
−
x
]
d
x
+
∫
ln
n
2
ln
n
[
n
e
−
x
]
d
x
+
.
.
.
.
.
.
.
.
.
.
∫
ln
n
n
ln
n
n
−
1
[
n
e
−
x
]
d
x
⎤
⎥
⎦
=
−
⎡
⎢
⎣
∫
ln
n
∞
(
0
)
d
x
+
1.
∫
ln
n
2
ln
n
1.
d
x
+
.
.
.
.
.
.
.
.
.
+
(
n
−
1
)
∫
ln
n
n
ln
n
n
−
1
d
x
⎤
⎥
⎦
=
−
[
(
ln
(
n
2
)
−
ln
(
n
)
)
+
2
(
ln
(
n
3
)
−
ln
(
n
2
)
)
+
.
.
.
.
.
.
.
.
.
(
n
−
1
)
(
ln
(
n
n
)
−
ln
(
n
n
−
1
)
)
]
=
[
(
ln
(
n
)
−
ln
(
n
2
)
)
+
2
(
ln
(
n
2
)
−
ln
(
n
3
)
)
+
.
.
.
.
.
.
.
.
.
(
n
−
1
)
(
ln
(
n
n
−
1
)
−
ln
(
n
n
)
)
]
=
(
n
−
1
)
ln
(
n
)
+
[
1.
ln
2
+
2.
ln
3
+
ln
4
+
4
ln
5
.
.
.
.
]
−
[
1.
ln
1
+
2.
ln
2
+
3.
ln
3
+
4
ln
4
+
.
.
.
.
]
=
(
n
−
1
)
ln
(
n
)
+
[
ln
1
+
ln
2
+
ln
3
+
ln
4
+
ln
5
+
.
.
.
.
.
.
.
.
]
=
(
n
−
1
)
ln
(
n
)
+
[
ln
[
1.2.3.4.......
(
n
−
1
)
]
]
=
(
n
−
1
)
ln
(
n
)
+
ln
(
n
−
1
)
!
=
ln
(
n
(
n
−
1
)
)
−
ln
(
n
−
1
)
!
=
ln
∣
∣
∣
n
(
n
−
1
)
(
n
−
1
)
!
∣
∣
∣
=
ln
∣
∣
∣
n
n
n
(
n
−
1
)
!
∣
∣
∣
=
ln
∣
∣
∣
n
n
n
!
∣
∣
∣
Hence the correct answer is
ln
∣
∣
∣
n
n
n
!
∣
∣
∣
Suggest Corrections
1
Similar questions
Q.
The function
f
:
N
→
N
defined by
f
(
x
)
=
x
−
5
[
x
5
]
, where N is the set of natural numbers and
[
x
]
denotes the greatest integer less than or equal to
x
, is
Q.
Let
n
be a natural number. Prove that
[
n
1
]
+
[
n
2
]
+
[
n
3
]
+
.
.
.
.
.
.
[
n
n
]
+
[
√
n
]
is even.
(Here
[
x
]
denotes the largest integer smaller than or equal to
x
)
Q.
o
v
e
r
s
e
t
2
n
π
∫
0
(
|
sin
x
|
−
[
∣
∣
∣
sin
x
2
∣
∣
∣
]
)
d
x
(where [] denotes the greatest integer function and
n
∈
I
)
Q.
The value of integral
∞
∫
0
[
n
⋅
e
−
x
]
d
x
is equal to
(
where
[
⋅
]
denotes the greatest integer function and
n
∈
N
,
n
>
1
)
Q.
Let
∫
2
0
[
x
2
−
x
+
1
]
d
x
; where
[
.
]
denotes the greatest integer function be equal to
k
−
√
m
n
.Find
k
+
m
+
n
?
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Some Functions and Their Graphs
MATHEMATICS
Watch in App
Explore more
Polynomial Functions
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app