wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (x2)2x26x+5dx=x32(x32)2+(12)2 +12(12)2log(x32)+(x32)2+(12)2.

Open in App
Solution

Let I=(x2)2x26x+5
Substitute x2=l(4x6)+m
On comparing we get 4l=1,6l+m=2
Therefore
l=14,m=12
Hence
I=l(4x6)2x26x+5dx+m2x26x+5dx
Substitute 2x26x+5=t(4x6)dx=dt
I=ltdt+m2x23x+5/2dx
=l.23t3/2+m2(x32)2+(12)2dx
=14.23(2x26x+5)3/2122I1=16(2x26x+5)3/212I1
Where I1=x322(x32)+(12)2
Hence
I=x32(x32)2+(12)2+12(12)2log(x32)+(x32)2+(12)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems on Integration
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon