Let I=∫(x−2)√2x2−6x+5
Substitute x−2=l(4x−6)+m
On comparing we get 4l=1,6l+m=−2
Therefore
l=14,m=−12
Hence
I=l∫(4x−6)√2x2−6x+5dx+m∫√2x2−6x+5dx
Substitute 2x2−6x+5=t⇒(4x−6)dx=dt
I=l∫√tdt+m√2∫√x2−3x+5/2dx
=l.23t3/2+m√2∫√(x−32)2+(12)2dx
=14.23(2x2−6x+5)3/2−12√2I1=16(2x2−6x+5)3/2−1√2I1
Where I1=x−322√(x−32)+(12)2
Hence
I=x−32√(x−32)2+(12)2+12(12)2log⎡⎣(x−32)+√(x−32)2+(12)2⎤⎦