I=π2∫0sin2xsinx+cosxdx ⋯(1)
Using ∫baf(x)dx=∫baf(a+b−x)dx, we have -
I=π2∫0sin2(π2−x)sin(π2−x)+cos(π2−x)dx
⇒I=π2∫0cos2xsinx+cosxdx⋯(2)
On adding (1) and (2), we have
2I=1√2π2∫0dxcos(x−π4)
=1√2π2∫0sec(x−π4)dx
=1√2[loge{sec(x−π4)+tan(x−π4)}]π20
=1√2[loge{sec(π4)+tan(π4)}−loge{sec(−π4)+tan(−π4)}]
=1√2[loge(√2+1)−loge(√2−1)]
=1√2loge∣∣∣√2+1√2−1∣∣∣
On rationalizing the denominator, we have
2I=1√2loge((√2+1)21)
⇒2I=2√2loge(√2+1)
⇒I=1√2loge(√2+1) (proved)